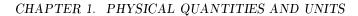


Cambridge International AS & A Level

PHYSICS P2

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS



Chapter 1

Physical quantities and units

1.1	SI units
1. 9702_	_m19_qp_22 Q: 1
(a)	The ampere, metre and second are SI base units.
	State two other SI base units.
	1
	2
(b)	The average drift speed v of electrons moving through a metal conductor is given by the equation: $v = \frac{\mu F}{e}$ where e is the charge on an electron F is a force acting on the electron and μ is a constant. Determine the SI base units of μ .
	SI base units[3]

 $2.\ 9702_s18_qp_22\ Q{:}\ 1$

1	a)	Dofino	force
- (6	a)	Define	torce.

.....[1]

(b) State the SI base units of force.

.....[1]

(c) The force F between two point charges is given by

$$F = \frac{Q_1 Q_2}{4\pi r^2 \varepsilon}$$

where Q_1 and Q_2 are the charges, r is the distance between the charges,

Palpacalition ε is a constant that depends on the medium between the charges.

Use the above expression to determine the base units of ε .

[Total: 4]

[1]

3. 9702 w17 qp 23 Q	: 1	1
---------------------	-----	---

(a) (i)	Define	power.
---------	--------	--------

	[1]

(ii) Show that the SI base units of power are $kg m^2 s^{-3}$.

(b) All bodies radiate energy. The power *P* radiated by a body is given by

$$P = kAT^4$$

where T is the thermodynamic temperature of the body, A is the surface area of the body and k is a constant.

(i) Determine the SI base units of k.

base units[2]

(ii) On Fig. 1.1, sketch the variation with T^2 of P. The quantity A remains constant.

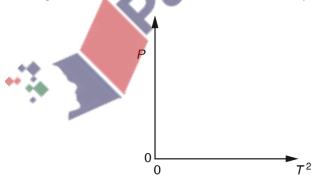


Fig. 1.1

[1]

[Total: 5]

4. 9702_s15_qp_21 Q: 1

(a) Use the definition of power to show that the SI base units of power are kg m² s⁻³.

[2]

(b) Use an expression for electrical power to determine the SI base units of potential difference.

doildde

 $5.\ 9702_w15_qp_23\ Q:\ 1$

(a) The intensity of a progressive wave is defined as the average power transmitted through a surface per unit area.

Show that the SI base units of intensity are kg s⁻³.

[2]

(b) (i) The intensity I of a sound wave is related to the amplitude x_0 of the wave by

$$I = K\rho c f^2 x_0^2$$

where ρ is the density of the medium through which the sound is passing,

c is the speed of the sound wave,

f is the frequency of the sound wave

and *K* is a constant.

Show that *K* has no units.

[2]

(ii) Calculate the intensity, in pW m⁻², of a sound wave where

K = 20, $\rho = 1.2$ in SI base units, c = 330 in SI base units, f = 260 in SI base units and $x_0 = 0.24$ nm.

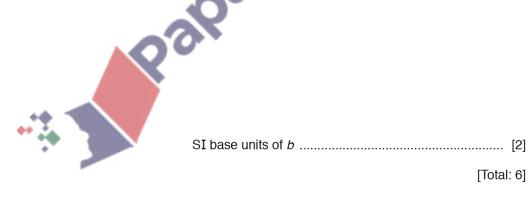
intensity =pW m⁻² [3]

1.2 Scalars and vectors

 $6.\ 9702_w19_qp_22\ Q:\ 1$

(a)	Distinguish between vector and scalar quantities.
	[2]

(b) The electric field strength E at a distance x from an isolated point charge Q is given by the equation


$$E = \frac{Q}{x^2b}$$

where b is a constant.

(i) Use the definition of electric field strength to show that E has SI base units of $kgmA^{-1}s^{-3}$.

[2]

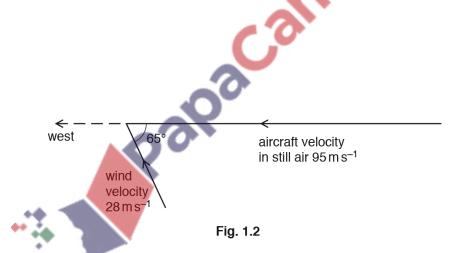
(ii) Use the units for E given in (b)(i) to determine the SI base units of b.

[Total: 6]

7. $9702 _s18 _qp_21 Q: 1$

(a)	State what is meant by a	scalar quantity and by	<i>l</i> a <i>vector</i> quantity.

scalar:	
vector:	
	[2]
	L-,


(b) Complete Fig. 1.1 to indicate whether each of the quantities is a vector or a scalar.

quantity	vector or scalar
power	
temperature	
momentum	

Fig. 1.1

[2]

(c) An aircraft is travelling in wind. Fig. 1.2 shows the velocities for the aircraft in still air and for the wind.

The velocity of the aircraft in still air is $95\,\text{m}\,\text{s}^{-1}$ to the west. The velocity of the wind is $28\,\text{m}\,\text{s}^{-1}$ from 65° south of east.

(i) On Fig. 1.2, draw an arrow, labelled R, in the direction of the resultant velocity of the aircraft. [1]

(ii) Determine the magnitude of the resultant velocity of the aircraft.

8. $9702 _s17 _qp_23 Q: 1$

- (a) Two forces, with magnitudes 5.0 N and 12 N, act from the same point on an object. Calculate the magnitude of the resultant force *R* for the forces acting
 - (i) in opposite directions,

(ii) at right angles to each other.

(b) An object X rests on a smooth horizontal surface. Two horizontal forces act on X as shown in Fig. 1.1.

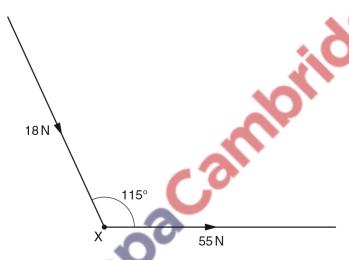


Fig. 1.1 (not to scale)

A force of 55N is applied to the right. A force of 18N is applied at an angle of 115° to the direction of the 55N force.

CAL	ARS AND VECTORS	-
(i)	Use the resolution of forces or a scale diagram to show that the magnitude of the resultan force acting on X is 65 N.	
	: 300	
	[2	
(ii)	Determine the angle between the resultant force and the 55 N force.	
	Call	

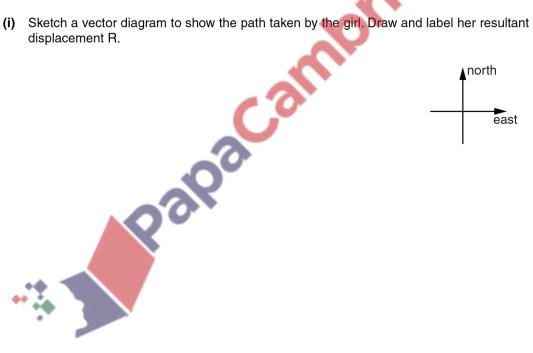
	[2]
	(ii) Determine the angle between the resultant force and the 55 N force.
(c)	angle =° [2] A third force of 80 N is now applied to X in the opposite direction to the resultant force in (b).
. ,	The mass of X is 2.7kg.
	Calculate the magnitude of the acceleration of X.

acceleration =	ms ⁻² [3]
	[Total: 9]

9. $9702_s16_qp_23$ Q: 1

(a) A list of quantities that are either scalars or vectors is shown in Fig. 1.1.

quantity	scalar	vector
distance	✓	
energy		
momentum		
power		
time		
weight		

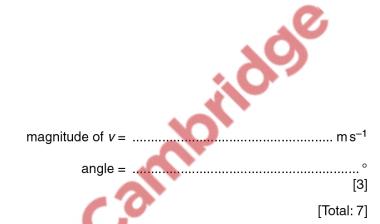

Fig. 1.1

Complete Fig. 1.1 to indicate whether each quantity is a scalar or a vector.

One line has been completed as an example.

[2]

- (b) A girl runs 120 m due north in 15 s. She then runs 80 m due east in 12 s.
 - (i) Sketch a vector diagram to show the path taken by the girl. Draw and label her resultant displacement R.



- (ii) Calculate, for the girl,
 - 1. the average speed,

average speed =
$$m s^{-1}$$
 [1]

2. the magnitude of the average velocity *v* and its angle with respect to the direction of the initial path.

10. $9702_{\text{w}15}_{\text{qp}}$ 22 Q: 1

(a) The frequency of an X-ray wave is 4.6×10^{20} Hz.

Calculate the wavelength in pm.

wavelength = pm [3]

(b) The distance from Earth to a star is 8.5×10^{16} m. Calculate the time for light to travel from the star to Earth in Gs.

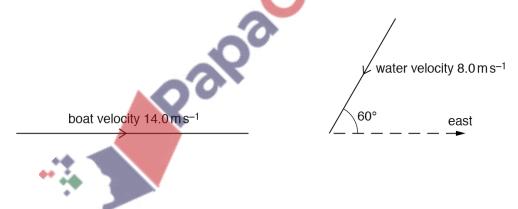
time = Gs [2]

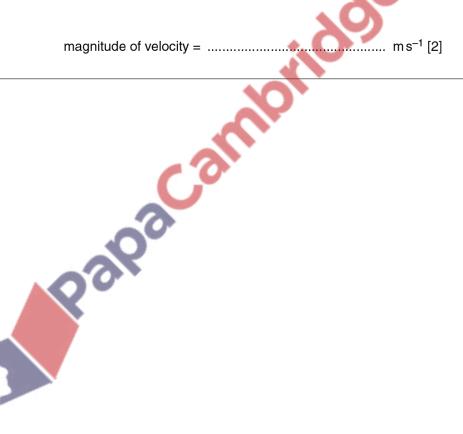
(c) The following list contains scalar and vector quantities.

Underline all the scalar quantities.

acceleration force mass power temperature weight [1]

(d) A boat is travelling in a flowing river. Fig. 1.1 shows the velocity vectors for the boat and the river water.




Fig. 1.1

The velocity of the boat in still water is $14.0\,\mathrm{m\,s^{-1}}$ to the east. The velocity of the water is $8.0\,\mathrm{m\,s^{-1}}$ from 60° north of east.

- (i) On Fig. 1.1, draw an arrow to show the direction of the resultant velocity of the boat. [1]
- (ii) Determine the magnitude of the resultant velocity of the boat.

